В правильной треугольной пирамиде SABC сторона основания АВ равна 6, а боковое ребро SA равно 4. Точки М и N — середины рёбер SA и SB соответственно. Плоскость содержит прямую MN и перпендикулярна плоскости основания пирамиды.
а) Докажите, что плоскость делит медиану СЕ основания в отношении 5:1, считая от точки С.
б) Найдите периметр многоугольника, являющегося сечением пирамиды SABC плоскостью .
Решение похоже на варианты 7, 10 и 19.
Чтобы найти периметр, мы также как в варианте 7 находим MN и GF.
Чтобы найти боковые стороны, сначала найдем GD и EF как
Ответ:
Вы тонете в океане математики и физики? Давайте спасаться вместе!
Получи запись бесплатного вебинара
с разбором задач, которые были на реальном ЕГЭ-2019 (29 мая 2019г.),
получи условия и ссылки на решения некоторых задач
с реальных ЕГЭ-2017 (2 июня 2017) и ЕГЭ-2018 (26 июня 2018),
получи видеоразбор решений 11й,12й,13й,14й,15й, 16й,17й,18й задач
из варианта 7 книжки "Ященко 36 вариантов 2019",
видеозаписи прошлых вебинаров
Получить ссылки на вебинар и на видео. Нажимай!
C уважением, репетитор Павел Коваленко,
создатель сайта ege-resheniya.ru
замечатель